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The H~ + clusters, n (odd) - 13, are used to test the performance of an extreme 
approach with floating basis functions. Near-Har t ree-Fock energies and 
structures are obtained by optimizing the positions of the nuclei and of nearly 
all basis functions independently with relatively small basis sets of s-type 
functions only. Advantages and disadvantages of this approach are discussed. 
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1. Introduction 

In recent years the H~ clusters have been a favourite subject of quantum chemical 
investigations for several reasons. Their  few electrons permit the application of 
relatively large basis sets but nevertheless they contain enough nuclei to test the 
efficiency of methods for geometry optimization. Also, some of their properties 
are known experimentally (e.g. reaction enthalpies) and allow one to check the 
quality of the calculations, whereas others are unknown or uncertain (e.g. 
geometries) and therefore allow predictions to be made. 

The existence of the larger H + clusters with n (odd) _< 99 was established in 1969 
[1]. Equilibrium constants and dissociation enthalpies for the reaction 

q- + 
Hn ~ AHe(T)  (1) H n - 2  -l- H2 

were measured in the early seventies for n --- 11 [2]. In the late seventies and 
beginning of the eighties information on the structure of H~- [3] was obtained 
and the infrared spectrum of H~- was recorded [4]. Theoretical work on these 
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dusters has been referenced in our previous study on this subject [5], when we 
used the analytical energy gradient and the Hel lmann-Feynman force to optimize 
the geometry with floating orbitals. The H ,  + clusters were then used to test the 
performance of floating orbitals in a geometry optimization procedure (see [6] 
and Ref. therein) instead of a basis set with polarization functions. The method 
allowed only all the basis functions of a nucleus to be floated together. Its 
successful application [5] caused us to make program changes in such a way that 
different basis functions can now be floated independently. In the meantime this 
program was used in many calculations to optimize geometries for relatively 
large molecules including polarization [7-9]. To keep the number of floating 
orbitals within limits we applied the method in these previous studies in such a 
way that only the most diffuse basis functions were allowed to float, whereas all 
others were fixed on the nuclei. This method corresponds to about a double zeta 
plus polarization basis set and is well suited for structure calculations. 

Here  we apply the method in a more rigorous way to obtain near -Har t ree-Fock 
energies. A larger basis set of spherical gaussians only is applied. All of them, 
except the contracted function forming the cusp, are allowed to float indepen- 
dently. We expect to obtain near -Har t ree-Fock energies in this way with rela- 
tively small basis sets but additional time will be needed for the geometry 
optimization of all the floating orbitals. 

The expected results will permit an answer to questions such as the following 
--will  the Hartree-Fock-structure  of H~- converge in C2~ symmetry or will it, 

finally, change to D2u symmetry as it did with CEPA [10]? 
--will  the structures, especially the long distance between the H2 and the H~- 

nucleating center in the larger systems, still change a lot compared to the 
previously best basis sets [5]? 

- -were  the calculated De values for H1+1 and H~3 accurate or will the more 
extended basis sets including even more diffuse functions change these values 
significantly? 

2. Computational Method 

To obtain near -Har t ree-Fock energies with a basis set tractable also for the 
larger systems, one has to select the basis functions carefully. The 6s basis set 
by Huzinaga [11] deviates only 0.06 milli-hartree or 0.16 kJ /mol  from the exact 
energy for the hydrogen atom. Taking its three functions with the largest 
exponents as the CGTO fixed on the nucleus tO form the cusp we make sure 
that the deviation from the Har t ree-Fock limit due to deviations at the cusp is 
smaller than one millihartree even for H13.+ The additional basis functions were 
not contracted in order to keep the basis as flexible as possible also with respect 
to polarization. For them we decided to use an even-tempered set of exponents. 
In test calculations we used between 4 and 6 additional functions with exponents 
between 2.0 and 0.01. The goal was not to obtain energy optimized exponents 
for the hydrogen atom or the small clusters but rather to have functions included 
which are diffuse enough to account for long range effects in the larger clusters. 
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Table 1. Basis sets (only s-type functions) 
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Basis set I Basis set II 
Exponent Coefficient Exponent Coefficient 

68.16 0.023654 293.5708 0.004916 
10.2465 0.179767 43.93024 0.038606 
2.34648 0.860803 9.891184 0.203102 

2.765179 0.821040 
1.9 1 1.9 1 
0.6435 1 0.79908 1 
0.2179 1 0.33607 1 
0.0738 1 0.14134 1 
0.025 1 0.5944 1 

0.025 1 
Energy of H:0.499921Eh Energy of H:0.499979Eh 

Finally we decided to use the 8 lobes contracted to 6 basis functions given in 
Table 1 as basis set I. Applied to the hydrogen a tom its deviation to the exact 
energy is 0.2 kJ /mol .  This is slightly worse than Huzinaga 's  result [11] for H 
with a (6s) basis set. The reason is due to the inclusion of very diffuse functions 
as well as a floating function with an exponent  close to the value of one exponent  
in the CGTO.  These functions are necessary to provide the flexibility of the 
basis-set for the clusters. However ,  they do not improve the energy for the 
hydrogen atom. In addition the calculations for the systems up to H~- were 
repeated with the larger basis set II. This was necessary to obtain an estimate 
of an error due to symmetry  or near symmetry introduced in H~- which will be 
discussed in the next paragraph. Applied to the hydrogen a tom its deviation to 
the exact energy is 0.05 kJ /mol .  

The six (or seven for basis set II) forces per hydrogen a tom acting on the 5 (6) 
more  diffuse basis functions and the nucleus with the steeper contraction, respec- 
tively, were calculated analytically, following Pulay's scheme [12]. For more 
details see Ref. [7]. A new method for geometry  optimization by Smirnow [13] 
was adapted to our program. This method applied by Smirnow to C N D O  
calculations proved to be very efficient also for the ab initio calculations that we 
performed.  Utilizing internal coordinates for the geometry  optimization with a 
variable metric procedure it allows one to start with an experimental  or estimated 
force matrix. Therefore,  it combines the advantages of the force method by 
Pulay [14] with the advantages of the variable metric methods [ 15]. Nevertheless, 
the ab initio calculation can be per formed in Cartesian coordinates yielding a 
gradient which is then linearly t ransformed into internal coordinates. The internal 
displacement vector predicted by the variable metric procedure is again trans- 
formed back linearly into external coordinates. This method is even more  
advantageous if calculations for a series of molecules are performed,  where the 
larger contain the smaller ones as fragments. The approximate  force constants 
(or rather  pseudo force constants for the forces acting on the orbitals) obtained 
in the variable metric procedure for the smaller molecules can be used in the 
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start matrix of the larger molecules which reduces the number of steps in the 
geometry optimization for these time-consuming calculations. Likewise the 
optimized positions of the orbitals in the fragments can be used as start positions 
in the larger systems. 

The calculations were done on a Univac 1100/62 computer in single precision. 
The CPU-times needed for the full geometry optimizations were 530, 480 and 
400 min for H~, H~I and H~-3, respectively. 

3. Results and Discussion 

3.1. Energies 

Table 2 shows the total energies for the different species. For comparison the 
energies obtained with the best basis set in the previous paper are tabulated in 
the first column. The new total energies are lower by 5 to 38 kJ/mol.  

A drawback of the method applied is that floating orbitals cannot fully account 
for the polarization in highly symmetric molecules [7]. This is not valid for H, 
H2 and H~- where only a totally symmetric orbital is occupied. However,  analyzing 

q - .  

H5 in Dz~ symmetry, we find that the upper occupied orbital (b2) is antisymmetric 
with respect to $4. Whereas p- functions along the $4- axis on the central hydrogen 
can participate in this MO, the floating s-functions cannot due to symmetry 
(they are actually fixed to the central hydrogen by symmetry). This is strongly 
true only in Dzd symmetry, but will apply in a less rigorous way also in C2v 
symmetry. However,  it is not true, even in Ded symmetry, if the basis set is that 
large, that the basis functions on the other four hydrogen can account completely 
for the polarization at the central atom. 

To explore the amount  of this effect we carried out additional calculations. First, 
two additional p-functions with exponents 0.85 and 0.15, respectively, were 

Table 2. Total energies (E/Eh) 

Ion Previous (Estimated) 
cluster paper [5] Basis set I Basis set II Hartree-Fock-limit 

Hz -1.13126 -1.13337 
H~ -1.29656 -1.29975 
H~ -2.43698 -2.44182 

-2.44208 c 

H~ -3.57412 -3.58149 
Hff -4.71021 -4.71966 
Ha~ -5.84278 -5.85490 
HI~ -6.97514 -6.99010 

-1.13356 -1.13364 a 
-1.30014 -1.30025 b 
-2.44257 -2.4429 
-2.44273 c 

-3.5826 
-4.7210 
-5.8566 
-6.9921 

a Ref. [16] 
b ReI. [17] 
c With additional p-functions on the central atom (see text). 
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added and the geometry reoptimized. This lowered the energy by 0.7 kJ/mol. 
Second, the calculations for the systems H,  +, n (odd) -< 5, were repeated with the 
larger basis set. For H~- we added six additional p-functions with the exponents 
equal to those of the floating s-functions. The energy was lowered by only 
0.4 kJ/mol. These calculations were also of importance to make sure that the 
C2~ geometry was not favoured with respect to D2a symmetry by this symmetry 
dependent basis set defect. 

Similar considerations apply to the larger systems. In H~, e.g. the second occupied 
orbital (bl) is antisymmetric with respect to the C2-axis. Therefore, we added 
two p-functions at the hydrogen on the axis to the basis set and reoptimized the 
structure. In this case, however, the energy was not lowered at all (and the 
coefficients of the p-functions in the MO were pretty small). Evidently, here the 
basis functions on the relatively close neighbouring atoms were able to account 
for the polarization. 

Table 3 presents calculated dissociation energies De and experimental reaction 
enthalpies M-/e(T) for reaction (1). For a rigorous comparison we would have 
to evaluate all terms in the following equation 

De = M-/e(T) - AEv (T) - A(Erot(r) +Ekin(r) q-pr) (2) 

A calculation of AEo(T) in an adequate way is not feasible at the moment. 
However, the last term in Eq. (2) can be treated classically. In the third column 
of table 3 we show the experimental results minus this last term. These values 
are best suited for a comparison with the calculated values in the second column. 
Their difference (column 4) is due to the change in electron correlation and 
vibrational energy. 

The most accurate M-/~ value for H~- is a calculated one, which is in good 
agreement with the experimental values (see [9] and references therein). The 
term in column 4 (-18.0 kJ/mol) consists of 7.9 kJ/mol due to electron correla- 
tion and -25.9 kJ/mol due to zero point vibration. 

For H2 four experimental M-/e values are available [2], one of them being 
assumed not to be very accurate. The remaining three values 40.6 + 0.8 kJ/mol 

Table 3. Experimental and calculated energies for the dissociation reaction (kJ/mol) 

Ion D sCF 

cluster D scF [5] (this work) AH-A(Erot+Ekin+PV ) Z~corrq-~kl~ v AH~(T), exp. 

H~- 434.0 437.4 419.4 a -18.0 419.4 a (0 K) 
H~- 24.4 23.7 31.8 8.1 40.2 b (290 K) 
H~- 15.8 15.9 12.6 -3.3 17.28 (158 K) 
H9 ~ 13.1 12.6 11.8 -0.8 15.9 b (140 K) 
H[a 3.8 4.9 6.9 2.0 10.0 b (108 K) 
H~3 3.3 4.8 - -  

a Most accurate theoretical value, see text. 
b From Hiroaka et al.; Ref. [2] 
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(370K), 40.2kJ/mol (290K) and 33.9+3 kJ/mol (250K) yield ~ .... +&E~ 
values of 6.1, 8.1 and 2.9 kJ/mol, respectively. Assuming the value for &E .... 
(9.6 kJ/mol) calculated by Ahlrichs [10] being correct, &E~ is between -6.7 
and -1 .5  kJ/mol. Evidently, the experimental values are not accurate enough 
for a rigorous analysis, but we might conclude that the two terms cancel each 
other to a good extent. The same is suggested by the larger systems H~- to H~I. 

3.2. Structures 

Table 4 shows the structural data for the clusters up to H~-. The main features 
of the structures did not change, i.e. H~- is a regular triangle which acts as a 
nucleating centre for the H2 molecules. Investigating the distances as a function 
of the basis set (including the four basis sets of the previous study [5]) we find 
that no distance converges monotonously. The direction of approaching and 
overshooting the Hartree-Fock value is different, however, for the different 
distances. All structures in this study were optimized till the norm of the gradient 
of all internal coordinates (including the coordinates of all floating orbitals) was 
smaller than O.O008Eh/a~. 
The parameters in Table 4 are used in the following way. R 1 is the bond-length 
of the Hz-like subunits. R2 and R3 are the sides of the H~- triangle. R4 is the 
distance from a corner of the triangle to the middle of a H2 sub-unit. H~ and 
H~ have C2o-symmetry, H~- shows D3h symmetry. The change in R1 from H2 
to H~- suggests that we are dealing with a real H2 sub-unit which is perturbed 
mostly in H~- and least in H~-. This is exactly what we also would expect from 
the increasing distance R4.  Likewise we find a corresponding behaviour for the 
nucleating H~- triangle. In H~- it is hardly perturbed, showing a sidelength only 
0.008a0 larger than in Hi .  H~ and H~- show a stronger perturbation. In H~- the 
bond-length R2 opposite to the corner where the 1-I2 is attached is shortened by 
about the same amount as the others are increased. In H~- the bond-length R2 
between the corners where the H2 are attached is decreased only little whereas 
the others are increased similarly as in H~. 

Table 4. Structures 

Ion cluster Basis set R1/ao R2/ao R3/ao R4/ao 

H 2 I 1.387 
II 1.386 

H~- I 1.642 
II 1.639 

H~- a I 1.413 1.577 
II 1.412 1.571 

H~ I 1.406 1.629 

H~- I 1.402 1.650 

1.704 3.017 
1.710 2.970 

1.709 3.295 

3.476 

a With p-functions added on the central hydrogen. 
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The H~- structure shows no tendency towards D2a symmetry even if p-functions 
were added, which proves that this change [10] is a pure correlation effect. H~-I 
and H1+3 have the structure of H~- with He about 5.8a0 above and below the 
H~--plane, respectively. The H~ sub-unit is structurally not perturbed within the 
accuracy of the calculations. The relative potential between the H2 and H~ 
sub-units is extremely flat. Therefore  their relative position depends much on 
the starting geometry for the convergence threshold used. 

3.3. Positions of the Floating Basis Functions 

In molecules the electrons of one atom are polarized by the other atoms. Standard 
calculations take care of polarization by adding atomic functions with higher 
angular momentum than the highest occupied AO has, i.e. at least p-functions 
for hydrogen, to the basis set. Depending on the amount  of polarization these 
will contribute with larger or smaller coefficients to the molecular orbitals. In 
our scheme polarization will make the orbitals float more or less away from 
their nucleus. With a simple model, assuming a polarization due to a static 
external field, we would expect for a function the farther away, the smaller the 
exponent  [18]. However,  we find a more complicated situation. Table 5 shows 
the floating distances (from the nucleus) as a percentage of the H2 bond-length 
and of the height of the triangle for H2 and H~, respectively. At first sight the 
behaviour is fully erratic. An analysis of the floating in the course of the geometry 
optimization shows, nevertheless, that the basis functions with the two (three 
for basis set II) smallest exponents hardly change their starting position. These 
functions are too diffuse to change the energy much by changing their position. 
The function with the largest exponent has floated away extremely from the 
nucleus. This can be explained by the fact, that the contraction on the nucleus 
contains a very similar primitive function. Therefore,  the electron density near 
the nucleus is modelled pretty well by the contraction on the nucleus and the 
next function cannot contribute much in that area. This is confirmed by a relatively 
small coefficient of this basis function in the occupied molecular orbital. 

Table 5. Percentage of floating of the basis functions in H 2 and H~ 

Exponent H2 H~- 

Basis set I 1.9 41.4 29.2 
0.6435 6.9 12.4 
0.2179 8.3 17.9 
0.0738 14.7 10.7 
0.025 18.0 14.1 

Basis set II 1.9 35.0 24.8 
0.79908 5.2 10.5 
0.33607 7.4 16.0 
0.14134 15.1 10.8 
0.5944 21.1 14.6 
0.025 24.8 14.6 
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4. Conclusions 

The approach  to obtain  n e a r - H a r t r e e - F o c k  energies with relatively small basis 
sets where  all funct ions float independent ly  p roved  to be quite successful. A 
disadvantage of the me thod  is a basis set defect  in highly symmetr ic  species 
which is only unimpor tan t ,  if the basis set is sufficiently flexible. A n o t h e r  disad- 
vantage  is the l imitation to geomet ry  optimizat ion,  i.e. the me thod  is for  example  
not  very efficient for  potent ial  energy  surface searches. The  advantages  are the 
small basis set and the transferabili ty of informat ion  (position of the floating 
basis functions,  force constants) f rom smaller f ragments  to larger systems. 

The  calculated dissociation energies are in accordance  with the measured  M - / e  
values and allow one  to predict  that  the value for H1+3 should be equal to the 
one  for  H~-I within the experimental  accuracy. 

The  change f rom C2~ to D2a symmet ry  for H~- is a pure  correla t ion effect. 
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